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Abstraet-The effect of random initial geometric imperfections on the vibration behavior of rec­
tangular plates is investigated in this paper using a statistical method. The random initial geometric
imperfections of plates are described by Gaussian random fields and simulated numerically using
ElishakoJrs method. Lindstedt-Poincare's perturbation technique is employed to solve Duffing's
Equation with an additional quadratic spring term derived in the vibration analysis of imperfect
rectangular plates. A Monte Carlo analysis for simply supported plates is carried out in detail to
illustrate the proposed approach. It is shown that the effect of random geometric imperfections on
the vibration behavior of the plates can be described quantitatively in terms of the frequency
reliability function and the hardening type probability.

I. INTRODUCTION

It is well known that the initial geometric imperfection has a profound effect on the buckling
behavior ofshell and plate structures; however, the effect ofimperfection on the vibrational
behavior has received relatively little attention. This may be caused by the fact that a
considerable amount ofwork on nonlinear vibrations ofperfect structures (Reissner, 1955;
Chu and Herrmann, 1956; Chu, 1961; Yamaki, 1961; Prathap and Veradan, 1978) has
shown that the large amplitude vibrations of the perfect structures were always ofhardening
type for various boundary conditions and shapes of the structures.

Recently, the effect of initial geometric imperfection has been investigated by several
authors (Rosen and Singer, 1974; Singer and Prucz, 1982; Hui, 1983, 1984a, b; Hui and
Leissa, 1983a, b). A series of works have been published by Hui and Leissa (1983a, b) and
Hui (1983, I 984a, b). One term mode was used in their papers for both the vibration and
imperfection modes and it was found that the presence of geometric imperfection may
significantly raise the free vibration frequency. More interesting, contrary to the well­
established and widely accepted theory that the nonlinear vibration of flat plates is of the
hardening type, it was shown that the presence of unavoidable geometric imperfection
amplitudes ofonly half the plate thickness may change the nonlinear hard-spring character
of the plate to one with a soft-spring behavior.

This paper is based on the work reported in Wang (1986). Two further questions about
the description of imperfections and the corresponding analysis are investigated in the
paper. The first is about the form of imperfection. Clearly, the initial imperfection is
independent ofthe vibration mode and only depends on the manufacturing process, environ­
ment, etc. The second is that in practice it is very difficult to describe imperfection exactly.
In most cases, it is imperative to take the imperfection as a random variable or field.
Consequently, the uncertainties of imperfection must be taken into account in studying its
effects on the vibrational behavior.

The paper suggests a statistical method using the Monte Carlo technique which can be
used to solve the two questions in a unified way. The method by Elishakoff and Arbocz
(1982) for the buckling analysis of shell structures is used, and is demonstrated in detail
through the vibration simulation analysis of simply supported rectangular plates with
random geometric imperfections. The Monte Carlo method is used to "create" a large
number of imperfection plate samples, and the distribution function of the vibration fre-
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quency and the probability by which a plate behaves like a hard-spring or a soft-spring, the
two most important characteristics of vibration behavior, are calculated in the simulation.

2. MOTION EQUATIONS OF IMPERFECT PLATES

The dynamic analogue of von Karman equilibrium and compatibility differential equa­
tions (also known as Marguerre equations) in terms of the normal displacement Ii" and the
Airy stress function F for moderately large amplitude vibrations of plates with geometric
imperfection "'0 can be given by (Chia, 1980)

f"J4F E[( - ) 2 - - - - - - 2 - -]v = w,,'J' - IV. x.• w.lf - Wo,.'.' W.F - wO,J'fW,.'.' + wO,,'J' w""i'

where

(I)

(2)

D is the flexural rigidity, E is Young's modulus, h is the plate thickness, p is the plate mass
per unit area, X, yare the two in-plane coordinates and tis the time.

We introduce now the nondimensional quantities w, Wo, f, q, x, y and t. which are
defined by

and

(w, wo) = (»', lvo)/h, J = F/Eh 2

(x,y) = (x,y)/b, t = OJot

q(x,y, t) =q(x,y, i)/qo (3)

a
0:=­

b'

where v is Poisson's ratio and a and b are the plate widths along the x- and y-directions,
respectively. The governing nonlinear differential equations (1), (2) can now be written in
the nondimensional form

V4F = (w,xy) 2 - W,xx W,yy - wO,xx w,)'y - II' O.})'W,xx +2wO,xy w,x>" (5)

02 02

V
2

= ox2+ oy2'

The boundary conditions are taken as simply supported, the in-plane displacements
normal to the edges are constant and there is no in-plane shear along all edges. that is,

x =°or 0: W = 0, W,xx = 0, Ixx = 0, Ixy = 0;

y =°or 1 W = 0, w.yy = 0, !.,y = 0, Ixy = o. (6)

For a rectangular plate, the fundamental vibrational mode corresponds to the half sine
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waves on both the x- and y-directions. Some interesting results have been obtained by Hui
(1984a) by assuming that the shape of the geometrical imperfection is the same as the
fundamental mode. Obviously, this is not the general case. In fact a realistic geometrical
imperfection cannot be described deterministically in most cases. In order to get a complete
picture of the dynamic behavior of structures a statistical analysis of the imperfection must
be used.

3. REPRESENTATION OF RANDOM GEOMETRIC IMPERFECTIONS

In actual structures the initial geometric imperfections are unavoidable and cannot be
described deterministically in general. In fact, the magnitude or type of geometric imper­
fection of practical structures are never known exactly and, in a mass production situation,
these quantities will generally be subject to random variations. To obtain a clear and
complete picture of the behavior of such imperfect structures it becomes imperative to take
account of uncertainties that enter into any real application. The purely analytical approach
is to use a random field to describe the initial imperfection. This approach is rigorous in its
concept, but has disadvantages resulting from the mathematical complexities. A method of
digital simulation of Gaussian random fields has been developed by Elishakoff (1979). In
this method, the original random field problem is reduced to one of the simulation of
normal vectors. This method is very efficient in view of the difficulties in the purely analytical
approach, and of the recent advance of high-speed digital computers. Here, we extended
the method to describe the initial geometric imperfection in the plate structures.

Consider a plate which occupies the region n. Let wo(x) be a Gaussian random field
on n, and x = (XIoX2) be a coordinate vector. Suppose wt(x) (i = 1, ... , (0) is a complete
set of orthogonal functions on n which satisfy certain boundary conditions. Thus, the
random field wo(x) can be represented by the following series:

00

wo(x) = L Atwt(x)
t-1

(7)

where At, i = 1, ... ,00, are normal random variables and they are correlated with each
other. In practical computations, the series of eqn (7) is usually truncated to some finite
number N, so that the equation is replaced in what follows by

N

wo(x) = L Atwt(x).
t-1

The mean value function of wo(x) then becomes

N

E[wo(x)] = L E(At)wt(x).
/-1

Thus the mean values of the A/s are readily found as

E(A/) = (E[wo(x)], w/(x»/(w/(x), w/(x», i = 1, ... , N.

where

(8)

(9)

is the inner product of t/J and"'.
The varianee--covariance matrix of A/s can be determined by the auto-correlation

function of wo(x),
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.v .\
R(Xj, X2) = E{(wo(x,)-E[wo(XI)])(WO(X2)-E[wo(X2)])} = I IO'ij w,(xdWj (X2), (10)

i= , J= I

where

(II)

Using the orthogonality of w;(x)s, we find

The problem is now reduced to simulation of the random vector {AV= {A I,

A 2 , ••• ,AN} with mean value (9) and variance-eovariance matrix [!:] = (O'jj)NXN de­
fined by eqn (12). Because of its positive definiteness, this matrix has a unique Cholesky
decomposition; that is, there exists a lower triangular matrix [C] with positive diagonal
elements which satisfies

[!:] = [C][C]T. (13)

Then, according to the theory ofprobability, the random vector {A} can be represented
as

{A} = [C]{B} + {A} (14)

where {A} is the mean value vector of {A}, and {BV= {B I, B2, ••. ,B".} is the standard
normal random vector with distribution N({O}, [IN])' Therefore the problem can be further
reduced to one of the simulation of a set of independent standard normal variables.

Since eqn (8) is an approximation of the random field wo(x), by constructing the mean
function and the auto-eorrelation function of wo(x) from the collected data of the real
manufacturing process, the mean value and the variance-eovariance matrix of A;s can be
calculated directly through eqns (9) and (12). This idea, even though it may be expensive, is
very useful sometimes.

4. LARGE AMPLITUDE VIBRAnON ANALYSIS OF IMPERFECT PLATES

We now apply the above-mentioned results to the present problem. The initial random
geometric imperfection can be described approximately as

N, N,

wo(x,y) = L L A;j sin hex sin flty, 1= i/a..
i-I j-I

(IS)

A lj in the equation are normal random variables.
Let the fundamental vibration mode and the pressure distribution be given in form

{w(x,y,t),q(x,y,t)} = {w(t),ql cos (wt/wo)} sin Mrrx sin nrry

where w is the vibration frequency, M = m/a., and w(t) is the time-depended amplitude of
w(x,y, t). The specification of this type ofpressure distribution will not affect the problem,
since the present paper deals primarily with free vibrations of the plate.

Substituting w(x,y, t) and wo(x,y) into the nonlinear compatibility eqn (5), it follows
that



Nonlinear vibration of rectangular plates 103

Solving this equation with the boundary conditions (6), we find the stress function f
to be

{

NI N,

+~w(t) i~1 j~1 Aij[Hi~_C(i+m,j+n)

+HI}_C(i-m,j-n)+H&_C(i+m,j-n)+Ht_C(i-m,j+n)}} (16)

where the notations C(i,j), S(i,j) and Ht_ are

C(i, j) = cos Inx cos jny,

HI l11~_
Ijmlt = - l1(i+m,j+n) ,

H 3 l13_
Ijmlt = l1(i+m, j-n)'

S(i, j) = sin Inx sin jny,

H 2 l11~_
Ijmtt = - A(' .),

L.l l-m,J-n

H 4 l13mtt
ijmtt = l1(i-m,j+n)'

(17)

Substituting w(x,y, t), wo(x,y), q(x,y, t) and f(x,y, t) into the nonlinear equation of
motion (4) and applying the Ga/erkin procedure, i.e. multiplying both sides by S(m,m) and
then integrating over the plate, we obtain the following second-order nonlinear ordinary
differential equation in time for the amplitude w(t) :

where
4

Fi)_ = L Ht_J1)_
k-l

F,~_ = l1lj_[A,)+A(I+ 2M)U+ 2tt)} -l1&_[Alu+211) +A(I+ 2ttt)j}

F&mtt = AI~mtt[A'j+A(2m-1)(2II-j) +A(I_ 2ttt)U- 2tt) - A(2ttt-I)()- 211) - A(I_ 2M)(2II-j)]

+ A~mtt[Ai(2tt-j) +A(2m-il) - Ai(}_ 211) - A(i- 2ttt)j]

F&mtt = l11}mttlA(,+ 2ttt)(2tt-j) - A(I+ 2m)(}- 2tt) - AI)} +l1~mttlA(I+ 2ttt)j+AI(}_ 2tt) - AI(2tt_j)]

Ftmtt = l1b_[A(2M-il(2tt+j) - A(i- 2m)(j+ 2tt) - A/j] +l1~_[AI(}+ 2tt) +A(i- 2M») - A(2M_l)j]

l1~:: = [In-(-I)k2Mn+jMp, l1t:: = [In-(-It'2Mn-jM]2, k= 1,2.

A,j=O, ifiE;;O, ori>Nt. orjE;;O, orj>N2•

(19)

(20)
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Letting the random parameters 6, c:, ~ be

(21 )

eqn (18) becomes

(22)

which is the well-known Duffing's Equation with an additional quadratic spring term. As
in Nayfeh and Mook (1979), considering the case ql = 0, taking c: as a small parameter and
using Lindstedt-Poincare's perturbation method, we get that the ratio of the nonlinear to
linear free vibration frequencies n/no(n~ = <5) is related to the vibration amplitude A in
the form

where

nino = 1+11A2 -15c:2A 4/256, (23)

(24)

The result here is same in the form as that obtained by Hui (1984a); however, from the
equations in (21), the parameters e, e, therefore 11 are now random variables. Note that the
random parameter 11 is a characteristic parameter for the dynamic behavior of the plates,
since, at least in the case of sufficiently small values of the vibration amplitude A, the
nonlinear hard-spring or soft-spring characters can be indicated by positive or negative
values of the random parameter 11, respectively.

S. MONTE CARLO SIMULATION AND NUMERICAL RESULTS

As shown by formula (14), having S realizations of random vector {B}, we obtain the
same number of realizations of {A}, i.e. the realizations of plate samples. This simulation
technique is applicable for homogeneous as well as for nonhomogeneous random pro­
cesses with the given mean and autocovariance functions.

For a numerical example, assume the random initial imperfection is fully separable,
and the autocovariance function is ofexponential-<:osine type in both the x- and y-direction,
i.e. the dimensionless autocovariance function is

The mean function is taken as

E[wol = J.l sin KTtx sin /Tty; (26)

this form emphasizes the effect of imperfection mode (k, I).
Substituting the two functions into eqns (9), (12), we obtain expressions for Aij and

(1ijkl as follows:
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Fig. 1. Histogram of frequency.
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(27)

i:#:j

i =j,

~31+2inB ~[(~II~~I-~21~il )
A ~. + ~I ~. +2B AG II, .

+ (~sl~~I-~61~il +~ ~ '-A 2)G ]
2~1 11 2. 21

2_1_ (i2PI _ ipJ)
i2-i ~I ~J

~kl = B-(-1)k in, ~(2+k)1 = A2+~1i> ~(4+k)1 = A2-~11' ~i = ~31~4;' k = 1,2.

PI = 2ABGII-(A2-~II~21)G2I, Gil = (_1)1 e-Asin B, G2i = (_1)1 e-Acos B-1.

Equation (27) is analogous to Elishakoft"'s formula for the simply supported beam in
Elishakoft" [1983, eqns (10.84) or (11.36)].

The calculations are carried out for various types of mean imperfection and vibration
mode. The Monte Carlo Method (Mihram, 1972) is applied to generate 500 realizations of
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the random vector {B}; thus the same number of plate samples are "created". The
parameters of the simulated plates are fixed at v = 0.3, AI = A 2 = n/2, B I = B2 = n,
~2 = 0.005. For each plate sample a deterministic vibration analysis is performed. Some of
the simulation results are shown in Figs 1-8 (A 2 = 0.5, k = 1= I, Nt = N 2 = 8 for all
figures).

The numerical results show that the degree ofdivergence offrequency (i.e. the deviation
from the normal concentration of frequency) increases as the fundamental vibration mode
(m, n) or the mean imperfection amplitude jJ. increase (Figs 1-3). More interesting, for the
given vibration mode (m, n) and mean imperfection mode (k, I), there exists a specific value
Jlc of Jl; the degree of divergence of frequency ratio 0/00 is significantly high near Jlc and
significantly low far away from Jlc (Figs 4-6). In the case (k, I) = (m, n), cQnsidering only
the vibration mode S(m,n) term in the geometric imperfection series (15), we can find
approximately this specific mean imperfection amplitude value to be

(28)

The simulation has shown that" is small when Jl = Jln which means the vibrational behavior
is very sensitive near the region Jl = Jlc'
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The reliability function is defined as the probability that the random natural frequency
of a plate structure is greater than a specific frequency value. The reliability function
measures physically the reliability that no consonance would occur when the structure is in
the environment of the specific vibration frequency. A more general definition of the
reliability function, i.e. the probability that the random natural frequency lies in some specific
region, can also be considered. The reliability function of frequency distribution at Jl = 0.7
and m = n = I is given in Fig. 7. For example, the reliability of 0 > 1.14 is 0.712, i.e.
Prob(O> 1.14) = 0.712. The hardening type probability is defined to be the probability
that the vibration behavior ofa given plate is ofhardening type. Figure 8 gives the hardening
type probability as a function of the mean imperfection amplitude p at m === n = I. The
probability curve indicates clearly that for small imperfection amplitudes (p < 0.6) most of
the plates are of hardening type (since Prob [plate is hardening type Ip < 0.6] > 0.5) and
for large imperfection amplitudes (p ~ 0.6) most of the plates are of softening type (since
Prob [plate is hardening type IJl ~ 0.6J < 0.5), a result consistent with the works on nonlinear
vibrations of the perfect plates (Jl = 0) in Chu and Herrmann (1956), Yamaki (1961) and
Prathap and Varadan (1978), and the corresponding works for imperfect plates (Jl = 0.5)
in Hui and Leissa (1983a, b) and Hui (1983, 1984a).

According to the Kolmogorov-Smirnov test (Massey, 1951) of goodness of fit at a level
of significance of 0.05 the critical value of the maximum absolute difference between the
unknown theoretical and obtained simulated distributions of nand n 0 0 is 1.36/
VSOO = 0.0608.

6. CONCLUSION

A statistical method using the Monte Carlo technique for the analysis of the effect of
random initial geometric imperfections on the vibrational behavior of rectangular plates is
presented. The proposed method is adequate and practical to deal with the uncertainties of
the realistic imperfections and can be used to solve the random geometric imperfection
representation and the corresponding vibration analysis in a unified way. The Monte Carlo
analysis performed for the simply supported plates illustrates how to use the proposed
approach to calculate the frequency reliability function and the probability by which a plate
behaves like a hard-spring or a soft-spring, the two characteristics which can be used to
describe quantitatively the effect of random geometric imperfections on the vibration
behavior of the plates.
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